Assessment 2 Practice Question Lumos StepUp High School Integrated Mathematics 2 - Practice test + Workbook

Lumos StepUp High School Integrated Mathematics 2 - Practice test + Workbook Assessment 2

         Get Full Access to Lumos StepUp High School Integrated Mathematics 2 - Practice test + Workbook

Currently, you have limited access to Lumos StepUp High School Integrated Mathematics 2 - Practice test + Workbook. The Full Program includes,

Buy ACTASPIRE Practice Resources
Lumos online Step Up Program is designed to Improve student Achievement in the Grade 12 ACTASPIRE Assessment Click Here To Learn MoreOnline Program

GO BACK

You are trying to disprove that 2\(\ne\) 1 after your friend shows you the following nine step proof that 2 = 1.

\(1.{\rm \; \; }a=b{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }assumption\)

\(2.{\rm \; \; }a^{2} =b^{2} {\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }square{\rm \; }both{\rm \; }sides\)

\(3.{\rm \; \; }a^{2} -b^{2} =b^{2} -b^{2} {\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }subtract{\rm \; }both{\rm \; }sides{\rm \; }by{\rm \; }b^{2} \)

\(4.{\rm \; \; }(a-b)(a+b)=b(b-b){\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }factor{\rm \; }both{\rm \; }sides\)

\(5.{\rm \; \; }(a-b)(a+b)=b(a-b){\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }substitute{\rm \; }b{\rm \; }with{\rm \; }a\)

\(6.{\rm \; \; }(a+b)=b{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }cancel{\rm \; }\left(a-b\right){\rm \; }on{\rm \; }both{\rm \; }sides\)

\(7.{\rm \; \; }(b+b)=b{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }substitute{\rm \; }a{\rm \; }with{\rm \; }b\)

\(8.{\rm \; \; }2b=b{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }add{\rm \; }b+b\)

\(9.{\rm \; \; }2=1{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }cancel{\rm \; }b{\rm \; }on{\rm \; }both{\rm \; }sides\)

Is it possible for you to disprove your friends conjecture? Provide justification to support your conclusion.