

Grade 4

LOUISIANA Math

LEAP2025 Practice

Updated for 2021-22

2 LEAP2025 Practice Tests

7 Question Types

30+ SKILLS

Important Instruction

Students, Parents, and Teachers can use the URL or QR code provided below to access two full-length Lumos LEAP practice tests. Please note that these assessments are provided in the Online format only.

URL

Visit the URL below and place the book access code

http://www.lumoslearning.com/a/tedbooks

Access Code: G4MLEAP-15070-P

This is a sample copy and not the full version of the workbook

INTRODUCTION

This book is specifically designed to improve student achievement on the Smarter Balanced Assessment Consortium (LEAP) Test. With over a decade of expertise in developing practice resources for standardized tests, Lumos Learning has designed the most efficient methodology to help students succeed on the state assessments (See Figure 1).

Lumos Smart Test Practice provides students LEAP assessment rehearsal along with an efficient pathway to overcome any standards proficiency gaps. Students perform at their best on standardized tests when they feel comfortable with the test content as well as the test format. Lumos online practice tests are meticulously designed to mirror the LEAP assessment. It adheres to the guidelines provided by the LEAP for the number of questions, standards, difficulty level, sessions, question types, and duration.

The process starts with students taking the online diagnostic assessment. This online diagnostic test will help assess students' proficiency levels in various standards.

After completion of the diagnostic assessment, students can take note of standards where they are not proficient. This step will help parents and educators in developing a targeted remedial study plan based on a student's proficiency gaps.

Once the targeted remedial study plan is in place, students can start practicing the lessons in this workbook that are focused on specific standards.

After the student completes the targeted remedial practice, the student should attempt the second online LEAP practice test. Record the proficiency levels in the second practice test to measure the student progress and identify any additional learning gaps. Further targeted practice can be planned to help students gain comprehensive skills mastery needed to ensure success on the state assessment.

Lumos Smart Test Prep Methodology

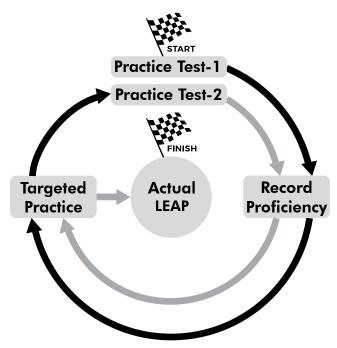


Figure 1

Table of Contents

5	

Introduction	on		1
Chapter 1	Lumos Sma	art Test Prep Methodology	6
Chapter 2	Operations	s and Algebraic Thinking	10
Lesson 1	4.OA.A.1	Number Sentences ······	10
Lesson 2	4.OA.A.2	Real World Problems	14
Lesson 3	4.OA.A.3	Multi-Step Problems ······	18
Lesson 4	4.OA.B.4	Number Theory ·····	22
Lesson 5	4.OA.C.5	Patterns	27
		Answer Key & Detailed Explanations	32
Chapter 3	Number &	Operations in Base Ten	46
Lesson 1	4.NBT.A.1	Place Value	46
Lesson 2	4.NBT.A.2	Compare Numbers and Expanded Notation	50
Lesson 3	4.NBT.A.3	Rounding Numbers	54
Lesson 4	4.NBT.B.4	Addition & Subtraction	58
Lesson 5	4.NBT.B.5	Multiplication	62
Lesson 6	4.NBT.B.6	Division	66
		Answer Key & Detailed Explanations	70
Chapter 4		Operations – Fractions	87
Lesson 1	4.NF.A.1	Equivalent Hactions	87
Lesson 2	4.NF.A.2	Compare Fractions	93
Lesson 3	4.NF.B.3.A	Adding and Subtracting Fractions	99
Lesson 4	4.NF.B.3.B	Adding and Subtracting Fractions through Decompositions	103
Lesson 5	4.NF.B.3.C	Adding and Subtracting Mixed Numbers	106
Lesson 6	4.NF.B.3.D	Adding and Subtracting Fractions in Word Problems	109
Lesson 7	4.NF.B.4.A	Multiplying Fractions	113
Lesson 8	4.NF.B.4.B	Multiplying Fractions by a Whole Number	116
Lesson 9	4.NF.B.4.C	Multiplying Fractions in Word Problems	119
Lesson 10	4.NF.C.5	10 to 100 Equivalent Fractions	122
Lesson 11	4.NF.C.6	Convert Fractions to Decimals	126
Lesson 12	4.NF.C.7	Compare Decimals	130
		Answer Key & Detailed Explanations	135

Chapter 5	Measureme	nt and Data	167			
Lesson 1	4.MD.A.1	Units of Measurement	167			
Lesson 2	4.MD.A.2	Measurement Problems	171			
Lesson 3	4.MD.A.3	Perimeter & Area	176			
Lesson 4	4.MD.B.4	Representing and Interpreting Data	182			
Lesson 5	4.MD.C.5.A	Angle Measurement	199			
Lesson 6	4.MD.C.5.B	Measuring Turned Angles	205			
Lesson 7	4.MD.C.6	Measuring and Sketching Angles	209			
Lesson 8	4.MD.C.7	Adding and Subtracting Angle Measurements	213			
		Answer Key & Detailed Explanations	216			
Chapter 6	Geometry	•••••	233			
Lesson 1	4.G.A.1	Points, Lines, Rays, and Segments				
Lesson 2	4.G.A.1	Angles				
Lesson 3	4.G.A.2	Classifying Plane (2-D) Shapes	241			
Lesson 4	4.G.A.3	Symmetry	246			
		Answer Key & Detailed Explanations	250			
Additional I	Information	••••••	258			
LEAP FAQ 258						
What if I buy more than one Lumos Study Program? 2						
Lumos StepUp® Mobile App FAQ for Students						
Lumos StepUp® Mobile App FAQ for Parents and Teachers						
Progress Chart						

Chapter 1

Lumos Smart Test Prep Methodology

Step 1: Access Online LEAP Practice Test

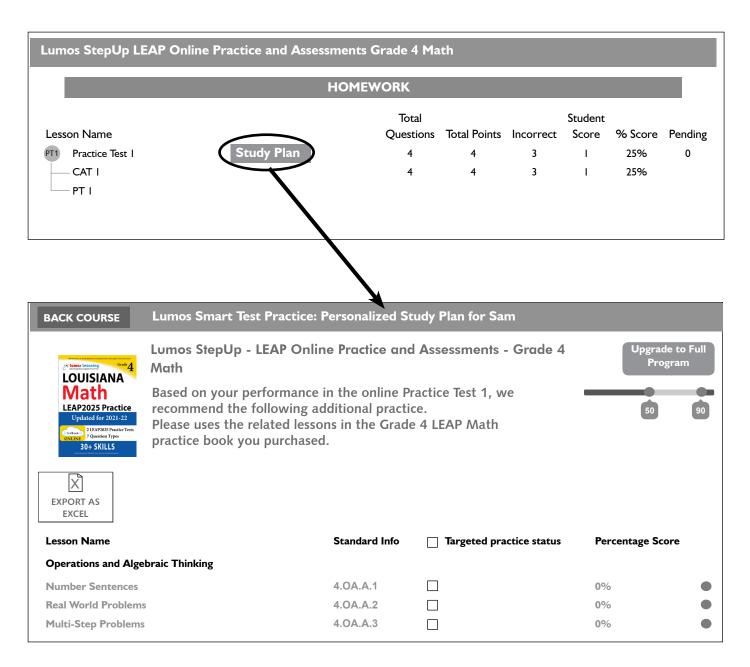
Use the URL and access code provided below or scan the QR code to access the first LEAP practice test to get started. The online LEAP practice test mirrors the actual Smarter Balanced assessments in number of questions, item types, test duration, test tools and more.

After completing the test, your student will receive immediate feedback with detailed reports on standards mastery. With this report, use the next section of the book to design a practice plan for your student.

URL

Visit the URL below and place the book access code

http://www.lumoslearning.com/a/tedbooks


Access Code: xxxxxxx-xxxxxxx

Step 2: Review the Personalized Study Plan Online

After student complete the online Practice Test 1, student can access their individualized study plan from the table of contents (Figure 2).

Parents and Teachers can also review the study plan through their Lumos account.

Step 3: Complete Targeted Practice

Using the information provided in the study plan report, complete the targeted practice using the appropriate lessons to overcome proficiency gaps. With lesson names included in the study plan, find the appropriate topics in this workbook and answer the questions provided. Students can refer to the answer key and detailed answers provided for each lesson to gain further understanding of the learning objective. Marking the completed lessons in the study plan after each practice session is recommended. (See Figure 3)

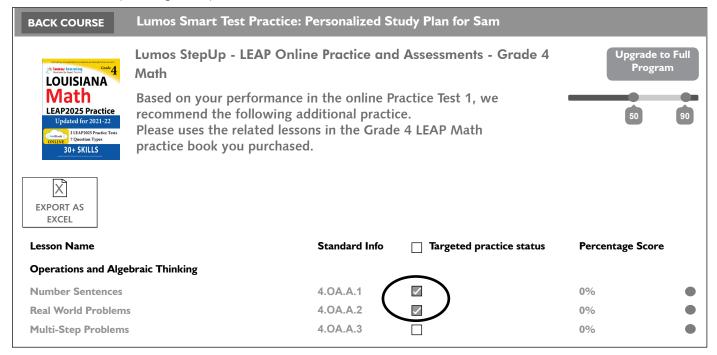


Figure 3

Step 4: Access the Practice Test 2 Online

After completing the targeted practice in this workbook, students should attempt the second LEAP practice test online. Using the student login name and password, login to the Lumos website to complete the second practice test.

Step 5: Repeat Targeted Practice

Repeat the targeted practice as per Step 3 using the second study plan report for Practice test 2 after completion of the second LEAP rehearsal.

Visit http://www.lumoslearning.com/a/lstp for more information on Lumos Smart Test Prep Methodology or Scan the QR Code

Name

Date

Chapter 2: Operations and Algebraic Thinking

Lesson 1: Number Sentences

You can scan the QR code given below or use the url to access additional EdSearch resources including videos and mobile apps related to *Number Sentences*.

Categories	About 9 results (0.034 seconds)				
Videos (4)	Comparing with multiplication				
Questions (3)	Resource: Khan Academy				
Khan Academy (z)	Standard: 4.OA.A.1	+			
Popular Searches 💙	Grade: 4				
Topular Searches •	Subject: Math				
Recent Searches 💙	Topic Standard				

ed Search	Number Sentences	
	URL	QR Code
http://www	v.lumoslearning.com/a/4oaa1	

LumosLearning.com

1. Andrew is twice as old as his brother, Josh. Which equation could be used to figure out Andrew's age if Josh's age, n, is unknown?

$$\triangle$$
 a = n + 2

$$\mathbf{B}$$
 $a = n \div 2$

$$n = a + 2$$

2. Mandy bought 28 marbles. She wants to give the same number of marbles to each of her four friends. What equation or number sentence would she use to find the number of marbles each friend will get?

A
$$28 - 4 = n$$

B
$$28 \div 4 = n$$

$$\bigcirc$$
 28 + 4 = n

$$\bigcirc$$
 28 - 4 = n

3. What number does n represent?

$$3 + 6 + n = 22$$

$$\triangle$$
 n = 9

$$n = 13$$

4. Cindy's mother baked cookies for the school bake sale. Monday she baked 4 dozen cookies. Tuesday she baked 3 dozen cookies. Wednesday she baked 4 dozen cookies. After she finished baking Thursday afternoon, she took 15 dozen cookies to the bake sale. Which equation shows how to determine the number of cookies that she baked on Thursday?

$$4 + 3 + 4 + n = 15$$

B
$$4 + 3 + 4 = n$$

$$\bigcirc$$
 4 x 3 x 4 x n = 15

$$\mathbf{D} 15 \div 11 = n$$

- 5. There are 9 students in Mrs. Whitten's class. She gave each student the same number of popsicle sticks. There were 47 popsicle sticks in her bag. To decide how many sticks each student received, Larry wrote the following number sentence: $47 \div 9 = n$. How many popsicle sticks were left in the bag after dividing them evenly among the 9 students?
 - **A** 0
 - **B** 2
 - 3
 - **D** 4

- 6. Sixty-three students visited the science exhibit. The remainder of the visitors were adults. One hundred forty-seven people visited the science exhibit in all. How would you determine how many of the visitors were adults?
 - \triangle 63 + 147 = n
 - **B** $147 \div 63 = n$
 - \bigcirc 147 ÷ n = 63
 - \bigcirc 63 + n = 147
- 7. Donald bought a rope that was 89 feet long. To divide his rope into 11 foot long sections, he solved the following problem: $89 \div 11 = n$. How many feet of rope was left over?
 - O feet
 - B 1 foot
 - © 2 feet
 - 3 feet
- 8. If 976 n = 325 is true, which of the following equations is NOT true?
 - $\mathbf{A} 976 + 325 = \mathbf{n}$
 - **B** 976 325 = n
 - n + 325 = 976
 - \bigcirc 325 + n = 976
- 9. Mary has \$54. Jack has n times as much money as Mary does. The total amount of money Jack has is \$486. What is n?
 - **A** 19
 - **B** 29
 - **9**
 - None of these
- 10. Mrs. Williams went to Toys R' US to purchase the following items for each of her 3 children: one bicycle for \$150, one bicycle helmet for \$8, one arts and crafts set for \$34 and one box of washable markers for \$2 for each child. What is the total amount she spent before taxes?
 - **A** \$194.00
 - **B** \$582.00
 - **©** \$572.00
 - **•** \$482.00

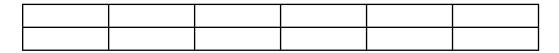
11. Write an equation to show how many crayons are below.

___ × ___ = ___ crayons

12. Alice has 5 bags with 8 pens in each. Which of the following choices represent a number sentence for this situation. Note that more than one option may be correct. Select all the correct answers.

$$\mathbf{A} 8 + 8 + 8 + 8 + 8 = 40$$

B
$$5 \times 8 = 40$$


$$\bigcirc$$
 5 + 8 = 13

$$\mathbf{0} 8 \times 8 = 64$$

13. Create an equation from the following situation: Tim had a box of chocolates. He started with 18 chocolates, but then gave 6 to his friends. How many does he have left?

14. John draws a regular hexagon. Each side measures 12 centimeters. He also draws a rhombus. The perimeter of the hexagon and the rhombus are the same. How much does each side of the rhombus measure? Shade the cells to indicate the correct answer. Note: Each shaded cell is equivalent to 2 cms.

15. Jose purchased 4 books and 8 pens. Each book costs \$3, and each pen costs \$5. If he gave \$100 to the shopkeeper, how much change did he receive back? Circle the correct answer.

- **A** \$52
- **B** \$48
- **6** \$62
- **©** \$38

Name _____ Date ____

Chapter 2: Operations and Algebraic Thinking Answer Key & Detailed Explanations

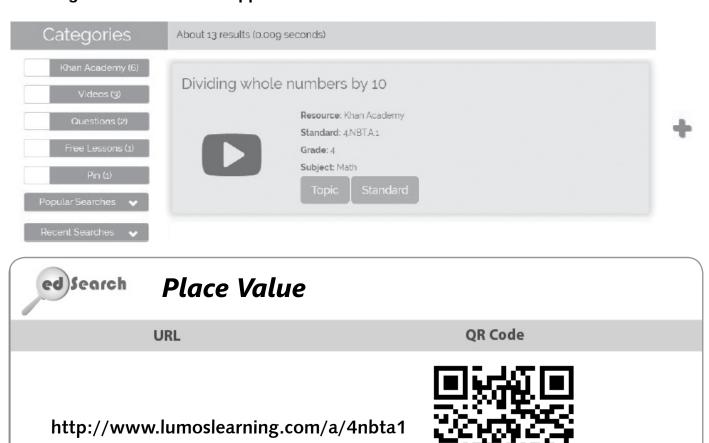
LumosLearning.com 11

Date		

Lesson 1: Number Sentences

Question No.	Answer	Detailed Explanation
1	D	It requires multiplication to find out the amount for twice as many. The symbol for multiplication is x . If \mathbf{n} represents Josh's age, then \mathbf{a} represents Andrew's age.
2	В	Mandy is making 4 equal groups out of 28. Therefore, 28 divided by 4 equal the number of marbles each friend receives.
3	В	To find n, we need to get it alone by subtracting the other numbers. This is an equation that needs to stay balanced, so what is done on one side of the $=$ sign must be done on the other side. If we subtract 9 (6+3) from both sides, we have $n = 13$.
4	Α	It is known that Cindy's mother baked $4 + 3 + 4$ dozens of cookies plus an unknown number (n). The correct equation adds the amount baked Monday through Wednesday and adds the unknown (n).
5	В	47 divided by $9 = 5$ with a remainder of 2.
6	D	There is a difference between the number of visitors to the science exhibit and the number of adult visitors. Subtract 63 from 147 to find n. The inverse equation is the correct answer: $63 + n = 147$
7	В	89 divided by 11 is 8 with a remainder of 1. The remainder is the number of feet left over.
8	Α	Adding 976 and 325 is the opposite of what the problem is stating: what number subtracted from $976 = 325$.
9	С	Divide 486 by 54. 486 \div 54 = 9. Jack has 9 times as much money as Mary does.
10	В	For each child, Mrs. Williams spent $$150 + 8 + 34 + 2 = 194.00 . However, the beginning of the problem states she is shopping for all three of her children so you will need to determine her full total. For three children, she would spend a total of $$194.00 \times 3 = 582.00 .
11	4x6=24	Since there are 4 boxes, with 6 crayons in each box, to find the total number of crayons, multiply 4 and 6 together, which equals 24.
12	A & B	Each of the 5 bags have 8 pens, so we can either multiply 5 x 8 or add 8 together 5 times $(8 + 8 + 8 + 8 + 8)$ because multiplication is repeated addition.

Name _____ Date ____


Question No.	Answer	Detailed Explanation
13	18 - 6 = 12	Let the number of chocolates Tim had be N He gave 6 to his friends. Hence, the balance will be N - 6 So, the number of chocolates left with him will be 18 - 6 = 12
14	18cm	Total No. of Rows x Columns:2 x 6 Cells to be highlighted:9 A regular hexagon has six equal sides. Therefore, perimeter of the hexagon = $6 \times 12 = 72 \text{ cm}$. A rhombus has four equal sides. Let the length of each side be s. perimeter of the rhombus = $4 \times s = \text{perimeter}$ of the hexagon = $72 \times s = 72$; $s = 72 \div 4 = 18 \times s = 72$; $s = 72 \div 4 = 18 \times s = 72$
15	В	This is a two-step problem. First, we calculate the total cost of 4 books and 8 pens; Total cost = $(4 \times 3) + (8 \times 5) = 12 + 40 = 52 . Next, we subtract the total cost from the amount Jose gave to the shop-keeper to calculate the change he receives back; $100 - 52 = 48 .

Chapter 3: Number & Operations in Base Ten

Lesson 1: Place Value

You can scan the QR code given below or use the url to access additional EdSearch resources including videos and mobile apps related to *Place Value*.

- 1. What number can be found in the ten-thousands digit of 291,807?
 - **A** 9
 - **B** 1
 - **©** 2
 - **0** 0
- 2. Consider the number 890,260. The 8 is found in the _____ place.
 - A ten-thousands
 - B millions
 - thousands
 - hundred-thousands

Place Value Chart

Hundred-billions	Ten-billions	Billions	Hundred-millions	Ten-millions	Millions	Hundred-thousands	Ten-thousands	Thousands	Hundreds	Tens	Ones

3.	What number	correctly	completes	this	statement	?
----	-------------	-----------	-----------	------	-----------	---

9 ten thousands = _____ thousands

- **A** 90
- **B** 900
- **9**
- **D** 19

- 4. Which number is in the thousands place in the number 984,923?
 - **A** 9
 - **B** 8
 - **4**
 - **D** 2
- 5. What is the value of the 8 in 683,345?
 - **A** 80
 - **B** 800
 - **©** 8,000
 - **0** 80,000
- 6. Which number equals 4 thousands, 6 hundreds, 0 tens, and 5 ones?
 - **A** 465
 - **B** 4,605
 - **4**,650
 - **1** 4,065
- 7. What number is in the tens place in 156.25?
 - **A** 1
 - **B** 5
 - 6
 - **D** 2
- 8. Which number equals 2 ten thousands, 1 hundred thousand, and 3 ones
 - 120,003
 - **B** 210,003
 - **©** 102,003
 - **D** 213,000
- 9. Which answer shows the value of each 7 in this number: 7,777?
 - **A** 7,000, 700, 70, 7
 - **B** 7×7×7×7
 - **6** 700,000, 70,000, 700, 70
 - **D** 7 + 7 + 7 + 7

Manage	D.J.
Name	Date

- 10. Mrs. Winters went to the bank with eight 100 dollar bills. She wanted to replace them with all 10 dollar bills. How many 10 dollar bills will the bank give her in exchange?
 - 800 ten dollar bills
 - **B** 8,000 ten dollar bills
 - 8 ten dollar bills
 - 80 ten dollar bills

11. Select the correct value for each number

	5	50	500
How many hundreds are in 500?	0	0	0
How many tens are in 500?	0	0	0
How many ones are in 500?	0	0	0

12. Select the correct value for each number

	9	90	900
How many hundreds are in 900?	0	0	0
How many tens are in 900?	0	0	0
How many ones are in 900?	0	0	0

- 13. Which number equals 8 millions, 5 tens? Circle the correct answer
 - **a** 800,050
 - **B** 8,000,500
 - **6** 8,000,005
 - **8**,000,050

14. John has \$500	. Karen has 10	times as much	money. Ho	ow much r	noney doe	s Karen	have?
Write vour ansv	ver in the box b	elow	_		-		

1	,
(

Name	
------	--

Date	Date
------	------

Chapter 3:

Number and Operations in Base Ten Answer Key & Detailed Explanations

Name	Date

Lesson 1: Place Value

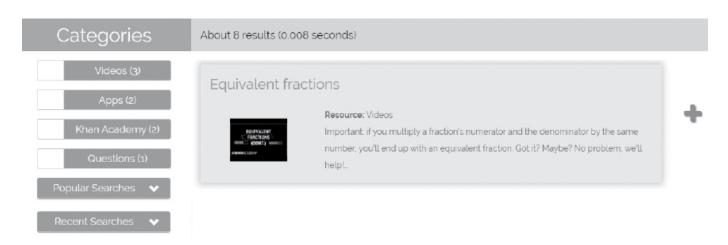
Question No.	Answer	Detailed Explanation												
1	A	Place values are read from right to left, beginning with the "ones" place, "tens", "hundreds", "thousands", "ten thousands", "hundred thousands", "millions", etc. If you were to write the number in the boxes below, you see the 9 is in the ten-thousand column. Place Value Chart												
		Hundred-billions	Ten-billions	Billions	Hundred-millions	Ten-millions	Millions	Hundred-thousands	Ten-thousands	Thousands	Hundreds	Tens	Ones	
2	<u> </u>								<u> </u>	_				J
2	D	9 is	in th	e ten	tho	usan	ds pl	ace.	Place	e valı	ıes ir	ncrea	se by	the right. Number multiplying 10: 1 and, etc.
3	Α	Mu	ltiply	9 x	10,0	00 tc	find	90,	000.					
4	С			3 is i undre										s" place. Number 9
5	D	The	8 is	in th	e ter	ı tho	usan	ds pl	ace,	whic	h is	8 x 1	0,00	00.
6	В							•				he h	undr	eds place, the 0 in
7	В	hun tens	Write the 4 in the thousands place, the 6 in the hundreds place, the 0 in the tens place and the 5 in the ones place. Numbers to the right of the decimal point begin with the value of tenths, hundredths, etc. Numbers to the left of the decimal place are the ones, tens, hundreds, etc. tens, hundreds, etc. 9,605,872.145678											

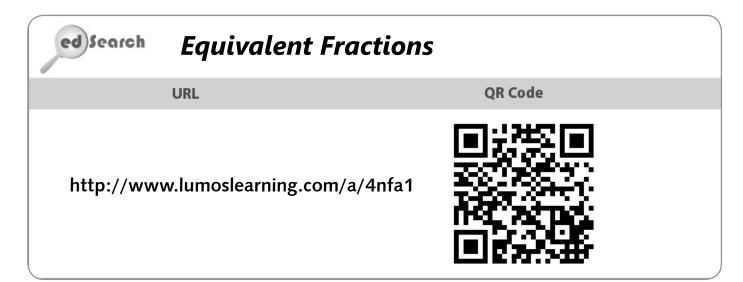
LumosLearning.com 1

Question No.	Answer	Detailed Explanation							
8	Α	Though not stated as such in the problem, the digit in the hundred thousands place is written first. The 2 ten thousands is written next: 2 ten thousands is 2 x 10,000. The next place that has any value is the ones place, which has 3. The thousands and hundreds place have no value, so zeros are placed there.							
9	Α	Write the numbers in expanded notation, which shows the entire value of the number written out. 7 in the thousands place is written as 7,000. 7 in the hundreds place is written as 700. 7 in the ones place is written as 7.							
10	D	There are ten 10 dollar bills in \$100. Therefore, there are 80 ten-dollar bills in \$800.							
11			5	50	500				
		How many hundreds are in 500?	0						
		How many tens are in 500?		0					
		How many ones are in 500?			0				

Name _____ Date ____

Question No.	Answer	Detailed Explanation													
12										Т	9		90	900	1
			How	man	y hun	dreds	are i	n 900)?		С)			
			How	man	y tens	are i	n 900)?					0		
			How	man	y one	s are	in 90	0?						0	
13	Α		s", '	'hun	dred	s", '								he "ones" "hundred	
					•	Place	e Val	ue C	har	<u> </u>					
		Hundred-billions	Ten-billions	Billions	Hundred-millions	Ten-millions	Millions	Hundred-thousands	Ten-thousands	Thousands	Hundreds	Tens	Ones		
14	\$5000						muc : 500					s we	have	e to multip	ly the


LumosLearning.com



Chapter 4: Number & Operations - Fractions

Lesson 1: Equivalent Fractions

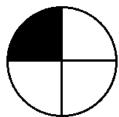
You can scan the QR code given below or use the url to access additional EdSearch resources including videos and mobile apps related to Equivalent Fractions.

1. What fraction of these shapes are squares?

- 2. What fraction of these shapes are not circles?

- 3. What fraction of the squares are shaded?

4. What fraction of the shaded shapes are circles?


- $\triangle \frac{2}{10}$

- 5. Continue the pattern of equivalent fractions: $\frac{1}{2}$, $\frac{2}{4}$, $\frac{3}{6}$, $\frac{4}{8}$...

What fraction would come next in the pattern?

- **A** $\frac{1}{3}$ **B** $\frac{1}{16}$
- $\bigcirc \frac{3}{4}$
- 6. Which pair of addends have the fraction $\frac{11}{12}$ as a sum?
 - **A** $\frac{9}{6} + \frac{2}{6}$ **B** $\frac{7}{12} + \frac{4}{12}$

 - \bullet $\frac{9}{12} + \frac{1}{12}$
 - \bullet $\frac{11}{12} + \frac{1}{1}$
- 7. Which fraction is equivalent to this model?

- 8. Which fraction is equivalent to 8/18?
- 9. Continue the pattern of equivalent fractions: $\frac{5}{6}$, $\frac{10}{12}$, $\frac{15}{18}$...

What fraction would come next in the pattern?

- 10. Reduce the fraction $\frac{21}{49}$ to its lowest terms:
- 11. Reduce the fraction $\frac{44}{99}$ to its lowest terms:

- 12. Patrick climbed $\frac{4}{5}$ of the way up the trunk of a tree. Jacob climbed $\frac{80}{100}$ of the way up the same tree. To accomplish the same distance as Patrick and Jacob, how far up that tree trunk will Devon have to climb?
 - **a** $\frac{15}{20}$ **b** $\frac{60}{75}$

 - \bullet $\frac{100}{200}$
- 13. The cheerleaders ate $\frac{9}{18}$ of a sheet cake. Write this fraction in lowest terms.

 - **A** $\frac{1}{9}$ **B** $\frac{1}{2}$ **C** $\frac{2}{3}$
- 14. Which group of fractions can all be reduced to $\frac{2}{9}$?
 - $\triangle \frac{23}{27}, \frac{4}{36}, \frac{30}{270}$
 - **B** $\frac{25}{50}$, $\frac{30}{60}$, $\frac{50}{100}$
 - \bullet $\frac{4}{18}$, $\frac{6}{27}$, $\frac{50}{225}$
- 15. What do these fractions have in common?
 - $\frac{10}{16}$, $\frac{15}{24}$, $\frac{20}{32}$, $\frac{25}{40}$, $\frac{30}{48}$
 - **A** These fractions are equivalent to $\frac{5}{9}$.
 - **B** These fractions are equivalent to $\frac{5}{8}$
 - These fractions are equivalent to $\frac{10}{12}$
 - **D** These fractions are equivalent to $\frac{4}{8}$.

16. Select whether the fraction pair is equivalent or not equivalent.

	Equivalent	Not Equivalent
$\frac{12}{15}$ and $\frac{3}{5}$	0	0
18/24 and 9/12	0	0
$\frac{18}{200}$ and $\frac{9}{100}$	0	0
$\frac{3}{15}$ and $\frac{3}{25}$	0	0

17. Write the simplest form of $\frac{120}{150}$. Write the answer in the box given below.

1	1
	J.
1	,

- 18. Circle on all of the fractions that can be simplified to $\frac{1}{2}$
 - **A** $\frac{24}{26}$
 - **B** $\frac{2}{4}$

 - $\frac{9}{20}$
 - \bullet $\frac{7}{14}$
- 19. Which group of fractions are equivalent to $\frac{4}{12}$? Select all the correct answers.
 - $\triangle \frac{1}{3}, \frac{2}{5}, \frac{3}{9}$
 - **B** $\frac{1}{3}$, $\frac{2}{6}$, $\frac{3}{9}$
 - \bullet $\frac{1}{3}$, $\frac{2}{5}$, $\frac{5}{20}$

Name		
1441110		

Date _____

Chapter 4: Number & Operations - Fractions Answer Key & Detailed Explanations

Lesson 1: Equivalent Fractions

Question No.	Answer	Detailed Explanation				
1	С	The denominator (bottom number) is the total number of items presented. The numerator (top number) is the number of identified items.				
2	С	There are three different shapes represented. This question is asking for the number of squares and triangles. That number of shapes that are not circles is the numerator and the total number of shapes is the denominator.				
3	Α	The fraction should only pertain to the number of squares: the number of shaded squares is the numerator and the total number of squares is the denominator.				
4	D	The number of shaded circles is the numerator and the total number of shaded shapes is the denominator.				
5	С	All of these fractions represent $\frac{1}{2}$. The numerators are 1 part out of 2 parts: 4 is two parts of 2. 6 is two parts of 3.				
6	В	The correct answer would be fractions which have numerators with a sum of 11 and denominators that are both 12.				
7	D	The model represents 1 part of something that is divided into 4 equal pieces. An equivalent fraction would also be $\frac{1}{4}$ of a total number of parts.				
8	D	Draw a model of $\frac{8}{18}$. Choose the fraction that has the same portion sizes as $\frac{8}{18}$.				
9	В	Each equivalent fraction represents 5 parts out of 6. When we multiply both numerators and denominators by a common factor, the new fraction will be equivalent to $\frac{5}{6}$. For eg. $\frac{5 \times 2}{6 \times 2} = \frac{10}{12}$ is equivalent to $\frac{5}{6}$. So, among the options, we see that option (B) $=\frac{20}{24}$ is correct. Because $\frac{20}{24}$ reduces to $\frac{5}{6}$, when the common factor is canceled. $\frac{20}{24} = \frac{5 \times 4}{6 \times 4} = \frac{5}{6}$.				
10	В	Find the GCF. This is the largest number that both the numerator and denominator can be divided by. The quotients are the numerator and denominator reduced to its lowest terms: for example, $\frac{15}{20}$ is reduced to $\frac{3}{4}$ because 15 is divided by 5 (GCF) 3 times and 20, 4 times. Five is the largest number that 15 and 20 can be divided by evenly. In our problem, $\frac{21}{49}$ can be reduced to $\frac{3}{7}$, because 21 is divided by 7 (GCF) 3 times and 49, 7 times.				

Question No.	Answer		Detailed Explanation				
11	D	Find the GCF, which is the largest factor that both the numerator and denominator can be divided by.					
12	В	The correct fraction can be reduced to its lowest terms of $\frac{4}{5}$: Find the Greatest Common Factor (GCF), which is a number that the numerator and denominator can be divided by: 80 divided by $20 = 4$ and 100 divided by $20 = 5$. In this case, the GCF is 20. The number of times the numerator and denominator divides evenly into the GCF ($\frac{4}{5}$) is the lowest terms. $\frac{60}{75}$ also reduces to $\frac{4}{5}$ when reduced to lowest terms. (GCF = 15)					
13	В	Reduce the fraction to it denominator by the GCF		dividing the numerator and			
14	С	Use the GCF of the numerator and denominator of each fraction to determine if it is equivalent to $\frac{2}{9}$.					
15	В	These fractions all reduce to $\frac{5}{8}$ in their lowest terms.					
16			Equivalent	Not Equivalent			
		12 3 15 and 5					
		$\frac{18}{24}$ and $\frac{9}{12}$					
		18 9 200 and 100					
		3 3 3 15 and 25					
		To find if the fractions are equivalent, change both of them into their simplest form. If the simplest form is the same, they are equivalent fractions. For example, 18/24 and 9/12 can be reduced to 3/4. So 18/24 and 9/12 are equivalent fractions. If the simplest forms are not the same, then the fractions are not equivalent. For example, 12 /15 reduces to 4/5. So, 12/15 and 3/5 are not equivalent.					
17	4/5	30 is the GCF of 120 and 150. When the GCF is taken out from both the numerator and denominator, 120/150 reduces to 4/5.					

Question No.	Answer	Detailed Explanation			
18	B,D,F	Divide out common terms as much as you can. Once you cannot simplify anymore, see which fractions are equivalent to $\frac{1}{2}$.			
		$\frac{2}{4} = \frac{\frac{2}{2}}{\frac{4}{2}} = \frac{1}{2}$			
		$\frac{35}{70} = \frac{^{35}/_{35}}{^{70}/_{35}} = \frac{1}{2}$			
		$\frac{7}{14} = \frac{\frac{7}{7}}{\frac{14}{7}} = \frac{1}{2}$			
		Therefore, $\frac{2}{4}$, $\frac{35}{70}$ and $\frac{7}{14}$ are equivalent to $\frac{1}{2}$			
19	B & D	$\frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6}$; $\frac{1}{3} = \frac{1 \times 3}{3 \times 3} = \frac{3}{9}$; Therefore, option (B) is correct.			
		$\frac{1}{3} = \frac{1 \times 6}{3 \times 6} = \frac{6}{18}; \ \frac{1}{3} = \frac{1 \times 12}{3 \times 12} = \frac{12}{36}; \ \frac{1}{3} = \frac{1 \times 15}{3 \times 15} = \frac{15}{45}$			
		Therefore, option (D) is correct.			

Progress Chart

Standard	Lesson	Page No.	Practice		Mastered	Re-practice /Reteach
CCSS			Date	Score		
4.OA.A.1	Number Sentences	10				
4.OA.A.2	Real World Problems	14				
4.OA.A.3	Multi-Step Problems	18				
4.OA.B.4	Number Theory	22				
4.OA.B.5	Patterns	27				
4.NBT.A.1	Place Value	46				
4.NBT.A.2	Compare Numbers and Expanded Notation	50				
4.NBT.A.3	Rounding Numbers	54				
4.NBT.B.4	Addition & Subtraction	58				
4.NBT.B.5	Multiplication	62				
4.NBT.B.5	Division	66				
4.NF.A.1	Equivalent Fractions	87				
4.NF.A.2	Compare Fractions	93				
4.NF.B.3.A	Adding & Subtracting Fractions	99				
4.NF.B.3.B	Adding and Subtracting Fractions Through Decompositions	103				
4.NF.B.3.C	Adding and Subtracting Mixed Numbers	106				
4.NF.B.3.D	Adding and Subtracting Fractions in Word Problems	109				
4.NF.B.4.A	Multiplying Fractions	113				
4.NF.B.4.B	Multiplying Fractions by a Whole Number	116				
4.NF.B.4.C	Multiplying Fractions in Word Problems	119				
4.NF.C.5	10 to 100 Equivalent Fractions	122				
4.NF.C.6	Convert Fractions to Decimals	126				
4.NF.C.7	Compare Decimals	130				

Standard	Lesson	Page No.	Practice		Mastered	Re-practice/ Reteach
CCSS			Date	Score		
4.MD.A.1	Units of Measurement	167				
4.MD.A.2	Measurement Problems	171				
4.MD.A.3	Perimeter & Area	176				
4.MD.B.4	Representing and Interpreting Data	182				
4.MD.C.5.A	Angle Measurement	199				
4.MD.C.5.B	Measuring Turned Angles	205				
4.MD.C.6	Measuring and Sketching Angles	209				
4.MD.C.7	Adding and Subtracting Angle Measurements	213				
4.G.A.1	Points, Lines, Rays and Segments	233				
4.G.A.1	Angles	237				
4.G.A.2	Classifying Plane (2-D) Shapes	241				
4.G.A.3	Symmetry	246				

For More Information

888-309-8227 support@lumoslearning.com WWW.LUMOSLEARNING.COM

GET QUOTE